Preferred Device

Amplifier Transistors

NPN Silicon

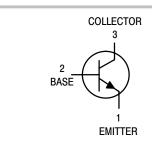
Features

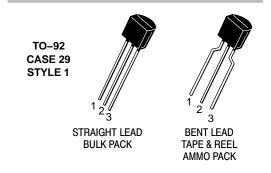
• These are Pb-Free Devices*

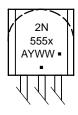
MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector – Emitter Voltage	2N5550 2N5551	V _{CEO}	140 160	Vdc
Collector – Base Voltage	2N5550 2N5551	V _{CBO}	160 180	Vdc
Emitter – Base Voltage		V _{EBO}	6.0	Vdc
Collector Current – Continuous		I _C	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C		P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C		P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

x = 0 or 1

A = Assembly Location

Y = Year

WW = Work Week

= Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS	1				
Collector-Emitter Breakdown Voltage (Note 1) (I _C = 1.0 mAdc, I _B = 0)	2N5550 2N5551	V _{(BR)CEO}	140 160	_ _	Vdc
Collector–Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N5550 2N5551	V _{(BR)CBO}	160 180	- -	Vdc
Emitter-Base Breakdown Voltage $(I_E=10~\mu Adc,~I_C=0)$		$V_{(BR)EBO}$	6.0	-	Vdc
	2N5550 2N5551 2N5550 2N5551	Ісво	- - - -	100 50 100 50	nAdc μAdc
Emitter Cutoff Current (V _{EB} = 4.0 Vdc, I _C = 0)		I _{EBO}	_	50	nAdc
ON CHARACTERISTICS (Note 1)				-	
DC Current Gain $ (I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) $ $ (I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) $	2N5550 2N5551 2N5550	h _{FE}	60 80 60	- - 250	-
$(I_C = 50 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$	2N5551 2N5550 2N5551		80 20 30	250 - -	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	Both Types 2N5550 2N5551	V _{CE(sat)}	- - -	0.15 0.25 0.20	Vdc
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$)	Both Types 2N5550 2N5551	V _{BE(sat)}	- - -	1.0 1.2 1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		f _T	100	300	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	6.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	2N5550 2N5551	C _{ibo}	- -	30 20	pF
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	50	200	-
Noise Figure (I _C = 250 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)	2N5550 2N5551	NF	_ _	10 8.0	dB

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

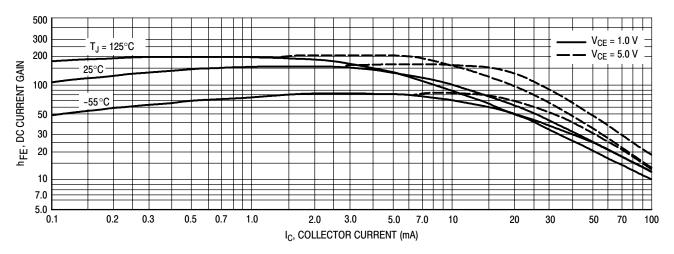


Figure 1. DC Current Gain

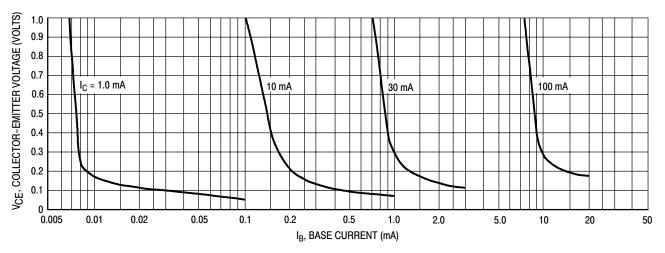


Figure 2. Collector Saturation Region

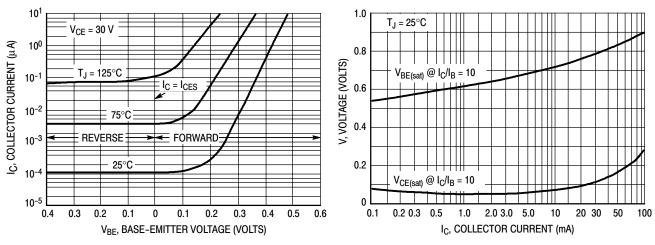
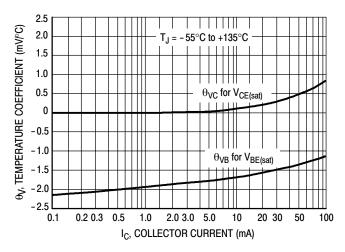
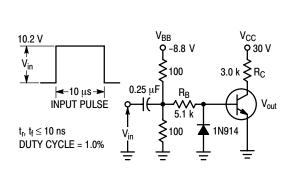




Figure 3. Collector Cut-Off Region

Figure 4. "On" Voltages

Figure 5. Temperature Coefficients

Values Shown are for $I_{\mathbb{C}} @ 10 \text{ mA}$

1000

500

300 200

100

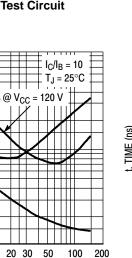
50

30

20

10

0.2 0.3 0.5


t, TIME (ns)

t_r @ V_{CC} = 30 V

 $t_d @ V_{EB(off)} = 1.0 V$

 V_{CC} = 120 V

Figure 6. Switching Time Test Circuit

I_C, COLLECTOR CURRENT (mA)

Figure 8. Turn-On Time

10

2.0 3.0 5.0

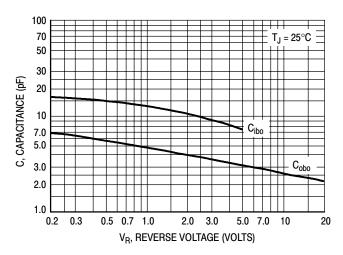


Figure 7. Capacitances

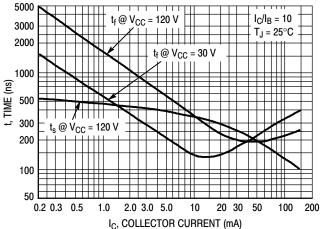
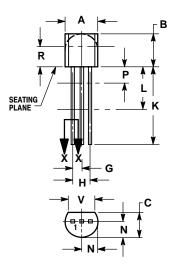
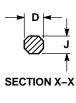


Figure 9. Turn-Off Time

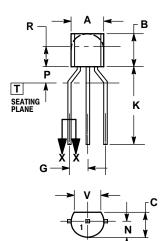

ORDERING INFORMATION

Device	Package	Shipping [†]	
2N5550G	TO-92 (Pb-Free)	5000 Units / Bulk	
2N5550RLRPG	TO-92 (Pb-Free)	2000 / Tape & Ammo Box	
2N5551G	TO-92 (Pb-Free)	5000 Units / Bulk	
2N5551RL1G	TO-92 (Pb-Free)	2000 / Tana 8 Dayl	
2N5551RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel	
2N5551RLRPG	TO-92 (Pb-Free)	- 2000 / Tape & Ammo Box	
2N55551ZL1G	TO-92 (Pb-Free)		


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**


STRAIGHT LEAD **BULK PACK**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
V	0 135		3 43	

BENT LEAD TAPE & REEL AMMO PACK

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION R IS UNCONTROLLED.

 LEAD DIMENSION IS UNCONTROLLED IN
- P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
V	3.43		

PIN 1. EMITTER

BASE

COLLECTOR

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, as patent rights of the figure of others. SCILLC products are not designed, interfaced, or adminized or authorized to the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative